Categories
Algebra Arithmetic Complex Numbers Math Olympiad USA Math Olympiad

Amplitude and Complex numbers | AIME I, 1996 Question 11

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1996 based on Amplitude and Complex numbers.

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1996 based on Amplitude and Complex numbers.

Amplitude and Complex numbers – AIME 1996


Let P be the product of the roots of \(z^{6}+z^{4}+z^{2}+1=0\) that have a positive imaginary part and suppose that P=r(costheta+isintheta) where \(0 \lt r\) and \(0 \leq \theta \lt 360\) find \(\theta\)

  • is 107
  • is 276
  • is 840
  • cannot be determined from the given information

Key Concepts


Equations

Complex Numbers

Integers

Check the Answer


Answer: is 276.

AIME, 1996, Question 11

Complex Numbers from A to Z by Titu Andreescue

Try with Hints


here\(z^{6}+z^{4}+z^{2}+1\)=\(z^{6}-z+z^{4}+z^{2}+z+1\)=\(z(z^{5}-1)+\frac{(z^{5}-1)}{(z-1)}\)=\(\frac{(z^{5}-1)(z^{2}-z+1)}{(z-1)}\) then \(\frac{(z^{5}-1)(z^{2}-z+1)}{(z-1)}\)=0

gives \(z^{5}=1 for z\neq 1\) gives \(z=cis 72,144,216,288\) and \(z^{2}-z+1=0 for z \neq 1\) gives z=\(\frac{1+-(-3)^\frac{1}{2}}{2}\)=\(cis60,300\) where cis\(\theta\)=cos\(\theta\)+isin\(\theta\)

taking \(0 \lt theta \lt 180\) for positive imaginary roots gives cis72,60,144 and then P=cis(72+60+144)=cis276 that is theta=276.

.

Subscribe to Cheenta at Youtube


Leave a Reply

Your email address will not be published. Required fields are marked *