Categories
Arithmetic Geometry Math Olympiad USA Math Olympiad

Arithmetic and geometric mean | AIME I, 2000 Question 6

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 2000 based on Arithmetic and geometric mean with Algebra.

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 2000 based on Arithmetic and geometric mean with Algebra.

Arithmetic and geometric mean with Algebra – AIME 2000


Find the number of ordered pairs (x,y) of integers is it true that \(0 \lt y \lt 10^{6}\) and that the arithmetic mean of x and y is exactly 2 more than the geometric mean of x and y.

  • is 107
  • is 997
  • is 840
  • cannot be determined from the given information

Key Concepts


Algebra

Equations

Ordered pair

Check the Answer


Answer: is 997.

AIME, 2000, Question 3

Elementary Algebra by Hall and Knight

Try with Hints


 given that \(\frac{x+y}{2}=2+({xy})^\frac{1}{2}\) then solving we have \(y^\frac{1}{2}\)-\(x^\frac{1}{2}\)=+2 and-2

given that \(y \gt x\) then \(y^\frac{1}{2}\)-\(x^\frac{1}{2}\)=+2 and here maximum integer value of \(y^\frac{1}{2}\)=\(10^{3}-1\)=999 whose corresponding \(x^\frac{1}{2}\)=997 and decreases upto \(y^\frac{1}{2}\)=3 whose corresponding \(x^\frac{1}{2}\)=1

then number of pairs (\(x^\frac{1}{2}\),\(y^\frac{1}{2}\))=number of pairs of (x,y)=997.

.

Subscribe to Cheenta at Youtube


Leave a Reply

Your email address will not be published. Required fields are marked *