Categories
Algebra AMC 10 Math Olympiad USA Math Olympiad

Linear Equation Problem | AMC 10A, 2015 | Problem No.16

Try this beautiful Problem on Algebra from the Linear equation from AMC 10 A, 2015.

Linear Equation Problem – AMC-10A, 2015- Problem 16


If $y+4=(x-2)^{2}, x+4=(y-2)^{2}$, and $x \neq y$, what is the value of $x^{2}+y^{2} ?$

,

  • $11$
  • $12$
  • $15$
  • $14$
  • $6$

Key Concepts


Algebra

Equation

Suggested Book | Source | Answer


Suggested Reading

Pre College Mathematics

Source of the problem

AMC-10A, 2015 Problem-16

Check the answer here, but try the problem first

$15$

Try with Hints


First Hint

Given that $y+4=(x-2)^{2}, x+4=(y-2)^{2}$ . we have to find out $x^{2}+y^{2} ?$. Now add two equations $x^{2}+y^{2}-4 x-4 y+8=x+y+8$

\(\Rightarrow x^{2}+y^{2}=5(x+y)\)

Can you find out the value \(x+y\)?

Second Hint

We can also subtract the two equations to yield the equation
$x^{2}-y^{2}-4 x+4 y=y-x$

\(\Rightarrow x^{2}-y^{2}=(x+y)(x-y)=3 x-3 y=3(x-y)\)

Therefore \((x+y)(x-y)=3 x-3 y=3(x-y)\)

\(\frac{(x+y)(x-y)}{(x-y)}=\frac{3(x-y)}{(x-y)}\) [ as\( x \neq y\)]

\(\Rightarrow (x+y)=3\)

Third Hint

Therefore \(x^2+y^2=5(x+y)=5 \times 3=15\)

Subscribe to Cheenta at Youtube


Categories
Algebra AMC 10 Math Olympiad USA Math Olympiad

Least Possible Value Problem | AMC-10A, 2019 | Quesstion19

Try this beautiful problem from Algebra based on Least Possible Value.

Least Possible Value – AMC-10A, 2019- Problem 19


What is the least possible value of \(((x+1)(x+2)(x+3)(x+4)+2019)\)

where (x) is a real number?

  • \((2024)\)
  • \((2018)\)
  • \((2020)\)

Key Concepts


Algebra

quadratic equation

least value

Check the Answer


Answer: \((2018)\)

AMC-10A (2019) Problem 19

Pre College Mathematics

Try with Hints


To find out the least positive value of \((x+1)(x+2)(x+3)(x+4)+2019\), at first we have to expand the expression .\(((x+1)(x+2)(x+3)(x+4)+2019)\) \(\Rightarrow (x+1)(x+4)(x+2)(x+3)+2019=(x^2+5x+4)(x^2+5x+6)+2019)\)

Let us take \(((x^2+5x+5=m))\)

then the above expression becomes \(((m-1)(m+1)+2019)\) \(\Rightarrow m^2-1+2019\) \(\Rightarrow m^2+2018\)

Can you now finish the problem ……….

Clearly in \((m^2+2018)…….(m^2)\) is positive ( squares of any number is non-negative) and least value is 0

can you finish the problem……..

Therefore minimum value of \(m^2+2108\) is \(2018\) since \(m^2 \geq 0\) for all m belongs to real .

Subscribe to Cheenta at Youtube


Categories
AIME II Algebra Arithmetic Calculus Math Olympiad USA Math Olympiad

Sequence and permutations | AIME II, 2015 | Question 10

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME II, 2015 based on Sequence and permutations.

Sequence and permutations – AIME II, 2015


Call a permutation \(a_1,a_2,….,a_n\) of the integers 1,2,…,n quasi increasing if \(a_k \leq a_{k+1} +2\) for each \(1 \leq k \leq n-1\), find the number of quasi increasing permutations of the integers 1,2,….,7.

  • is 107
  • is 486
  • is 840
  • cannot be determined from the given information

Key Concepts


Sequence

Permutations

Integers

Check the Answer


Answer: is 486.

AIME II, 2015, Question 10

Elementary Number Theory by David Burton

Try with Hints


While inserting n into a string with n-1 integers, integer n has 3 spots where it can be placed before n-1, before n-2, and at the end

Number of permutations with n elements is three times the number of permutations with n-1 elements

or, number of permutations for n elements=3 \(\times\) number of permutations of (n-1) elements

or, number of permutations for n elements=\(3^{2}\) number of permutations of (n-2) elements

……

or, number of permutations for n elements=\(3^{n-2}\) number of permutations of {n-(n-2)} elements

or, number of permutations for n elements=2 \(\times\) \(3^{n-2}\)

forming recurrence relation as the number of permutations =2 \(\times\) \(3^{n-2}\)

for n=3 all six permutations taken and go up 18, 54, 162, 486

for n=7, here \(2 \times 3^{5} =486.\)

Header text

as

Header text

sds

Subscribe to Cheenta at Youtube


Categories
Algebra Arithmetic Math Olympiad USA Math Olympiad

Numbers of positive integers | AIME I, 2012 | Question 1

Try this beautiful problem from the American Invitational Mathematics Examination, AIME 2012 based on Numbers of positive integers.

Numbers of positive integers – AIME 2012


Find the number of positive integers with three not necessarily distinct digits, \(abc\), with \(a \neq 0\) and \(c \neq 0\) such that both \(abc\) and \(cba\) are multiples of \(4\).

  • is 107
  • is 40
  • is 840
  • cannot be determined from the given information

Key Concepts


Integers

Number Theory

Algebra

Check the Answer


Answer: is 40.

AIME, 2012, Question 1.

Elementary Number Theory by David Burton .

Try with Hints


Here a number divisible by 4 if a units with tens place digit is divisible by 4

Then case 1 for 10b+a and for 10b+c gives 0(mod4) with a pair of a and c for every b

[ since abc and cba divisible by 4 only when the last two digits is divisible by 4 that is 10b+c and 10b+a is divisible by 4]

and case II 2(mod4) with a pair of a and c for every b

Then combining both cases we get for every b gives a pair of a s and a pair of c s

So for 10 b’s with 2 a’s and 2 c’s for every b gives \(10 \times 2 \times 2\)

Then number of ways \(10 \times 2 \times 2\) = 40 ways.

Subscribe to Cheenta at Youtube


Categories
AIME I Algebra Arithmetic Geometry Math Olympiad USA Math Olympiad

Number of points and planes | AIME I, 1999 | Question 10

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1999 based on Number of points and planes.

Number of points and planes – AIME I, 1999


Ten points in the plane are given with no three collinear. Four distinct segments joining pairs of three points are chosen at random, all such segments being equally likely.The probability that some three of the segments form a triangle whose vertices are among the ten given points is \(\frac{m}{n}\) where m and n are relatively prime positive integers, find m+n.

  • is 107
  • is 489
  • is 840
  • cannot be determined from the given information

Key Concepts


Number of points

Plane

Probability

Check the Answer


Answer: is 489.

AIME I, 1999, Question 10

Geometry Vol I to IV by Hall and Stevens

Try with Hints


\(10 \choose 3\) sets of 3 points which form triangles,

fourth distinct segment excluding 3 segments of triangles=45-3=42

Required probability=\(\frac{{10 \choose 3} \times 42}{45 \choose 4}\)

where \({45 \choose 4}\) is choosing 4 segments from 45 segments

=\(\frac{16}{473}\) then m+n=16+473=489.

Subscribe to Cheenta at Youtube


Categories
Algebra Arithmetic Calculus Math Olympiad USA Math Olympiad

Arithmetic Sequence Problem | AIME I, 2012 | Question 2

Try this beautiful problem from the American Invitational Mathematics Examination, AIME 2012 based on Arithmetic Sequence.

Arithmetic Sequence Problem – AIME 2012


The terms of an arithmetic sequence add to \(715\). The first term of the sequence is increased by \(1\), the second term is increased by \(3\), the third term is increased by \(5\), and in general, the \(k\)th term is increased by the \(k\)th odd positive integer. The terms of the new sequence add to \(836\). Find the sum of the first, last, and middle terms of the original sequence.

  • is 107
  • is 195
  • is 840
  • cannot be determined from the given information

Key Concepts


Series

Number Theory

Algebra

Check the Answer


Answer: is 195.

AIME, 2012, Question 2.

Elementary Number Theory by David Burton .

Try with Hints


After the adding of the odd numbers, the total of the sequence increases by \(836 – 715 = 121 = 11^2\).

Since the sum of the first \(n\) positive odd numbers is \(n^2\), there must be \(11\) terms in the sequence, so the mean of the sequence is \(\frac{715}{11} = 65\).

Since the first, last, and middle terms are centered around the mean, then \(65 \times 3 = 195\)

Hence option B correct.

Subscribe to Cheenta at Youtube


Categories
Algebra Arithmetic Math Olympiad USA Math Olympiad

Algebra and Positive Integer | AIME I, 1987 | Question 8

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1987 based on Algebra and Positive Integer.

Algebra and Positive Integer – AIME I, 1987


What is the largest positive integer n for which there is a unique integer k such that \(\frac{8}{15} <\frac{n}{n+k}<\frac{7}{13}\)?

  • is 107
  • is 112
  • is 840
  • cannot be determined from the given information

Key Concepts


Digits

Algebra

Numbers

Check the Answer


Answer: is 112.

AIME I, 1987, Question 8

Elementary Number Theory by David Burton

Try with Hints


Simplifying the inequality gives, 104(n+k)<195n<105(n+k)

or, 0<91n-104k<n+k

for 91n-104k<n+k, K>\(\frac{6n}{7}\)

and 0<91n-104k gives k<\(\frac{7n}{8}\)

so, 48n<56k<49n for 96<k<98 and k=97

thus largest value of n=112.

Subscribe to Cheenta at Youtube


Categories
Algebra Math Olympiad PRMO USA Math Olympiad

Positive Integer | PRMO-2017 | Question 1

Try this beautiful Positive Integer Problem from Algebra from PRMO 2017, Question 1.

Positive Integer – PRMO 2017, Question 1


How many positive integers less than 1000 have the property that the sum of the digits of each such number is divisible by 7 and the number itself is divisible by $3 ?$

  • $9$
  • $7$
  • $28$

Key Concepts


Algebra

Equation

multiplication

Check the Answer


Answer:$28$

PRMO-2017, Problem 1

Pre College Mathematics

Try with Hints


Let $n$ be the positive integer less than 1000 and $s$ be the sum of its digits, then $3 \mid n$ and $7 \mid s$
$3|n \Rightarrow 3| s$
therefore$21| s$

Can you now finish the problem ……….

Also $n<1000 \Rightarrow s \leq 27$
therefore $\mathrm{s}=21$
Clearly, n must be a 3 digit number Let $x_{1}, x_{2}, x_{3}$ be the digits, then $x_{1}+x_{2}+x_{3}=21$
where $1 \leq x_{1} \leq 9,0 \leq x_{2}, x_{3} \leq 9$
$\Rightarrow x_{2}+x_{3}=21-x_{1} \leq 18$
$\Rightarrow x_{1} \geq 3$

Can you finish the problem……..

For $x_{1}=3,4, \ldots ., 9,$ the equation (1) has $1,2,3, \ldots ., 7$ solutions
therefore total possible solution of equation (1)

=$1+2+\ldots+7=\frac{7 \times 8}{2}=28$

Subscribe to Cheenta at Youtube


Categories
Algebra Arithmetic Math Olympiad USA Math Olympiad

Distance Time | AIME I, 2012 | Question 4

Try this beautiful problem from the American Invitational Mathematics Examination, AIME, 2012 based on Distance Time.

Distance Time – AIME 2012


When they meet at the milepost, Sparky has been ridden for n miles total. Assume Butch rides Sparky for a miles, and Sundance rides for n-a miles. Thus, we can set up an equation, given that Sparky takes \(\frac{1}{6}\) hours per mile, Butch takes \(\frac{1}{4}\) hours per mile, and Sundance takes \(\frac{2}{5}\) hours per mile.

  • is 107
  • is 279
  • is 840
  • cannot be determined from the given information

Key Concepts


Time

Distance

Speed

Check the Answer


Answer: is 279.

AIME, 2012, Question 4

Problem Solving Strategies by Arther Engel

Try with Hints


After meeting at milepost, Sparky for n miles. Let Butch with Sparky for a miles Sundance with Sparky for n-a miles.

Then
\(\frac{a}{6} + \frac{n-a}{4}\) = \(\frac{n-a}{6} + \frac{2a}{5}\) implies that \(a = \frac{5}{19}n\)

Then integral value of n is 19 and a = 5 and \(t = \frac{13}{3}\) hours that is 260 minutes. Then \(19 + 260 = {279}\).

Subscribe to Cheenta at Youtube


Categories
Algebra Arithmetic Math Olympiad USA Math Olympiad

Arithmetic Mean | AIME I, 2015 | Question 12

Try this beautiful problem from the American Invitational Mathematics Examination, AIME, 2015 based on Arithmetic Mean.

Arithmetic Mean of Number Theory – AIME 2015


Consider all 1000-element subsets of the set {1, 2, 3, … , 2015}. From each such subset choose the least element. The arithmetic mean of all of these least elements is \(\frac{p}{q}\), where \(p\) and \(q\) are relatively prime positive integers. Find \(p + q\).

  • is 107
  • is 431
  • is 840
  • cannot be determined from the given information

Key Concepts


Inequalities

Algebra

Number Theory

Check the Answer


Answer: is 431.

AIME, 2015, Question 12

Elementary Number Theory by David Burton

Try with Hints


Each 1000-element subset \({ a_1, a_2,a_3,…,a_{1000}}\) of \({1,2,3,…,2015}\) with \(a_1<a_2<a_3<…<a_{1000}\) contributes \(a_1\) to sum of least element of each subset and set \({a_1+1,a_2+1,a_3+1,…,a_{1000}+1}\). \(a_1\) ways to choose a positive integer \(k\) such that \(k<a_1+1<a_2+1,a_3+1<…<a_{1000}+1\) (\(k\) can be anything from \(1\) to \(a_1\) inclusive

Thus, the number of ways to choose the set \({k,a_1+1,a_2+1,a_3+1,…,a_{1000}+1}\) is equal to the sum. But choosing a set \({k,a_1+1,a_2+1,a_3+1,…,a_{1000}+1}\) is same as choosing a 1001-element subset from \({1,2,3,…,2016}\)!

average =\(\frac{2016}{1001}\)=\(\frac{288}{143}\). Then \(p+q=288+143={431}\)

Subscribe to Cheenta at Youtube