Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 2012 based on Circles and triangles.
Circles and triangles – AIME I, 2012
Three concentric circles have radii 3,4 and 5. An equilateral triangle with one vertex on each circle has side length s. The largest possible area of the triangle can be written as \(a+\frac{b}{c}d^\frac{1}{2}\) where a,b,c,d are positive integers b and c are relative prime and d is not divisible by the square of any prime, find a+b+c+d.
- is 107
- is 41
- is 840
- cannot be determined from the given information
Key Concepts
Angles
Trigonometry
Triangles
Check the Answer
Answer: is 41.
AIME I, 2012, Question 13
Geometry Revisited by Coxeter
Try with Hints
In triangle ABC AO=3, BO=4, CO=5 let AB-BC=CA=s [ABC]=\(\frac{s^{2}3^\frac{1}{2}}{4}\)
\(s^{2}=3^{2}+4^{2}-2(3)(4)cosAOB\)=25-24cosAOB then [ABC]=\(\frac{25(3)^\frac{1}{2}}{4}-6(3)^\frac{1}{2}cosAOB\)
of the required form for angle AOB=150 (in degrees) then [ABC]=\(\frac{25(3)^\frac{1}{2}}{4}+9\) then a+b+c+d=25+3+4+9=41.
Other useful links
- https://www.cheenta.com/cubes-and-rectangles-math-olympiad-hanoi-2018/
- https://www.youtube.com/watch?v=ST58GTF95t4&t=140s