Categories
AMC 10 Combinatorics Math Olympiad USA Math Olympiad

Dice Problem | AMC 10A, 2014| Problem No 17

Try this beautiful Problem on Probability based on Dice from AMC 10 A, 2014. You may use sequential hints to solve the problem.

Dice Problem – AMC-10A, 2014 – Problem 17


Three fair six-sided dice are rolled. What is the probability that the values shown on two of the dice sum to the value shown on the remaining die?

,

  • $\frac{1}{6}$
  • $\frac{13}{72}$
  • $\frac{7}{36}$
  • $\frac{5}{24}$
  • $\frac{2}{9}$

Key Concepts


combinatorics

Dice-problem

Probability

Suggested Book | Source | Answer


Suggested Reading

Pre College Mathematics

Source of the problem

AMC-10A, 2014 Problem-17

Check the answer here, but try the problem first

$\frac{5}{24}$

Try with Hints


First Hint

Total number of dice is \(3\) and each dice \(6\) possibility. therefore there are total $6^{3}=216$ total possible rolls. we have to find out the probability that the values shown on two of the dice sum to the value shown on the remaining die.

Without cosidering any order of the die , the possible pairs are $(1,1,2),(1,2,3),(1,3,4)$,$(1,4,5),(1,5,6),(2,2,4),(2,3,5)$,$(2,4,6),(3,3,6)$

Now can you finish the problem?

Second Hint

Clearly $(1,1,1).(2,2,4),(3,3,6)$ this will happen in $\frac{3 !}{2}=3$ way

$(1,2,3),(1,3,4)$,$(1,4,5),(1,5,6),(2,3,5)$,$(2,4,6),$this will happen in $3 !=6$ ways

Now Can you finish the Problem?

Third Hint

Therefore, total number of ways $3\times3+6\times6=45$ so that sum of the two dice will be the third dice

Therefore the required answer is $\frac{45}{216}$=$\frac{5}{24}$

Subscribe to Cheenta at Youtube


Categories
AMC 10 Combinatorics Math Olympiad USA Math Olympiad

Coin Toss Problem | AMC 10A, 2017| Problem No 18

Try this beautiful Problem on Probability based on Coin toss from AMC 10 A, 2017. You may use sequential hints to solve the problem.

Coin Toss – AMC-10A, 2017- Problem 18


Amelia has a coin that lands heads with probability $\frac{1}{3}$, and Blaine has a coin that lands on heads with probability $\frac{2}{5}$. Amelia and Blaine alternately toss their coins until someone gets a head; the first one to get a head wins. All coin tosses are independent. Amelia goes first. The probability that Amelia wins is $\frac{p}{q},$ where $p$ and $q$ are relatively prime positive integers. What is $q-p ?$

,

  • $1$
  • $2$
  • $3$
  • $4$
  • $5$

Key Concepts


combinatorics

Coin toss

Probability

Suggested Book | Source | Answer


Suggested Reading

Pre College Mathematics

Source of the problem

AMC-10A, 2017 Problem-18

Check the answer here, but try the problem first

$4$

Try with Hints


First Hint

Amelia has a coin that lands heads with probability $\frac{1}{3}$, and Blaine has a coin that lands on heads with probability $\frac{2}{5}$. Amelia and Blaine alternately toss their coins until someone gets a head; the first one to get a head wins.

Now can you finish the problem?

Second Hint

Let $P$ be the probability Amelia wins. Note that $P=$ chance she wins on her first turn $+$ chance she gets to her second turn $\cdot \frac{1}{3}+$ chance she gets to her third turn $\cdot \frac{1}{3} \ldots$ This can be represented by an infinite geometric series,

Therefore the value of \(P\) will be $P=\frac{\frac{1}{3}}{1-\frac{2}{3} \cdot \frac{3}{5}}=\frac{\frac{1}{3}}{1-\frac{2}{5}}=\frac{\frac{1}{3}}{\frac{3}{5}}=\frac{1}{3} \cdot \frac{5}{3}=\frac{5}{9}$ which is of the form \(\frac{p}{q}\)

Now Can you finish the Problem?

Third Hint

Therefore \(q-p=9-5=4\)

Subscribe to Cheenta at Youtube


Categories
AMC 10 Combinatorics Math Olympiad USA Math Olympiad

Recursion Problem | AMC 10A, 2019| Problem No 15

Try this beautiful Problem on Algebra based on Recursion from AMC 10 A, 2019. You may use sequential hints to solve the problem.

Recursion- AMC-10A, 2019- Problem 15


A sequence of numbers is defined recursively by $a_{1}=1, a_{2}=\frac{3}{7},$ and $a_{n}=\frac{a_{n-2} \cdot a_{n-1}}{2 a_{n-2}-a_{n-1}}$

for all $n \geq 3$ Then $a_{2019}$ can be written as $\frac{p}{q},$ where $p$ and $q$ are relatively prime positive integers. What is $p+q ?$

  • $2020$
  • $4039$
  • $6057$
  • $6061$
  • $8078$

Key Concepts


Algebra

Recursive formula

Suggested Book | Source | Answer


Suggested Reading

Pre College Mathematics

Source of the problem

AMC-10A, 2019 Problem-15

Check the answer here, but try the problem first

$8078$

Try with Hints


First Hint

The given expression is $a_{n}=\frac{a_{n-2} \cdot a_{n-1}}{2 a_{n-2}-a_{n-1}}$ and given that $a_{1}=1, a_{2}=\frac{3}{7}$. we have to find out \(a_{2019}\)?

at first we may use recursive formula we can find out \(a_3\) , \(a_4\) with the help of \(a_1\), \(a_2\). later we can find out \(a_n\)

Now can you finish the problem?

Second Hint

Given that $a_{n}=\frac{a_{n-2} \cdot a_{n-1}}{2 a_{n-2}-a_{n-1}}$

Now \(n=3\) then $a_{3}=\frac{a_{(3-2)} \cdot a_{(3-1)}}{2 a_{(3-2)}-a_{(3-1)}}$

\(\Rightarrow\) $a_{3}=\frac{a_{(1)} \cdot a_{(2)}}{2 a_{(1)}-a_{(2)}}$

\(\Rightarrow\) $a_{3}=\frac{a_{(1)} \cdot a_{(2)}}{2 a_{(1)}-a_{(2)}}$

\(\Rightarrow\) $a_{3}=\frac{1*\frac{3}{7}}{2*1-\frac{3}{7}}$

\(\Rightarrow\) $a_{3}=\frac{3}{7}$

Similarly if we put \(n=4\) we get \(a_4=\frac{3}{15}\) (where $a_{1}=1, a_{2}=\frac{3}{7}$,\(a_3=\frac{3}{7}\))

Continue this way we $a_{n}=\frac{3}{4 n-1}$

So can you find out the value of \(a_{2019}\)?

Now Can you finish the Problem?

Third Hint

Now $a_{n}=\frac{3}{4 n-1}$

Put \(n=2019\)

$a_{2019}=\frac{3}{8075}$ which is the form of \(\frac{p}{q}\)

Therefore \(p+q=8078\)

Subscribe to Cheenta at Youtube


Categories
AMC 10 Combinatorics Math Olympiad USA Math Olympiad

Roots of Polynomial | AMC 10A, 2019| Problem No 24

Try this beautiful Problem on Algebra based on Roots of Polynomial from AMC 10 A, 2019. You may use sequential hints to solve the problem.

Algebra- AMC-10A, 2019- Problem 24


Let $p, q,$ and $r$ be the distinct roots of the polynomial $x^{3}-22 x^{2}+80 x-67$. It is given that there exist real numbers $A, B$, and $C$ such that $\frac{1}{s^{3}-22 s^{2}+80 s-67}=\frac{A}{s-p}+\frac{B}{s-q}+\frac{C}{s-r}$

for all $s \notin{p, q, r} .$ What is $\frac{1}{A}+\frac{1}{B}+\frac{1}{C} ?$

,

  • $243$
  • $244$
  • $245$
  • $246$
  • $247$

Key Concepts


Algebra

Linear Equation

Suggested Book | Source | Answer


Suggested Reading

Pre College Mathematics

Source of the problem

AMC-10A, 2019 Problem-24

Check the answer here, but try the problem first

$244$

Try with Hints


First Hint

The given equation is $\frac{1}{s^{3}-22 s^{2}+80 s-67}=\frac{A}{s-p}+\frac{B}{s-q}+\frac{C}{s-r}$…………………(1)

If we multiply both sides we will get

Multiplying both sides by $(s-p)(s-q)(s-r)$ we will get
$$
1=A(s-q)(s-r)+B(s-p)(s-r)+C(s-p)(s-q)
$$

Now can you finish the problem?

Second Hint

Now Put $S=P$ we will get $\frac{1}{A}=(p-q)(p-r)$…………(2)

Now Put $S=q$ we will get $\frac{1}{B}=(q-p)(q-r)$………..(3)

Now Put $S=r$ we will get $\frac{1}{C}=(r-p)(r-q)$………..(4)

Now Can you finish the Problem?

Third Hint

Adding (2) +(3)+(4) we get,$\frac{1}{A}+\frac{1}{B}+\frac{1}{C}=p^{2}+q^{2}+r^{2}-p q-q r-p r$

Now Using Vieta’s Formulas, $p^{2}+q^{2}+r^{2}=(p+q+r)^{2}-2(p q+q r+p r)=324$ and $p q+q r+p r=80$

Therefore the required answer is $324-80$=$244$

Subscribe to Cheenta at Youtube


Categories
AMC 10 Combinatorics Math Olympiad Number Theory Probability USA Math Olympiad

Probability in Marbles | AMC 10A, 2010| Problem No 23

Try this beautiful Problem on Probability in Marbles based on smallest value AMC 10 A, 2010. You may use sequential hints to solve the problem.

Probability in Marbles – AMC-10A, 2010- Problem 23


Each of 2010 boxes in a line contains a single red marble, and for $1 \leq k \leq 2010$, the box in the $k$ th position also contains $k$ white marbles. Isabella begins at the first box and successively draws a single marble at random from each box, in order. She stops when she first draws a red marble. Let $P(n)$ be the probability that Isabella stops after drawing exactly $n$ marbles. What is the smallest value of $n$ for which $P(n)<\frac{1}{2010}$ ?

,

  • $20$
  • $22$
  • $44$
  • $45$
  • $46$

Key Concepts


Probability

Combination

Marbles

Suggested Book | Source | Answer


Suggested Reading

Pre College Mathematics

Source of the problem

AMC-10A, 2010 Problem-23

Check the answer here, but try the problem first

$45$

Try with Hints


First Hint

Given that Each of 2010 boxes in a line contains a single red marble, and for $1 \leq k \leq 2010$, the box in the $k$ th position also contains $k$ white marbles..

Therefore The probability of drawing a white marble from box $k$ is $\frac{k}{k+1}$ and the probability of drawing a red marble from box $k$ is $\frac{1}{k+1}$

Now can you finish the problem?

Second Hint

Also given that She stops when she first draws a red marble. Let $P(n)$ be the probability that Isabella stops after drawing exactly $n$ marbles.

Therefore we can say $P(n)=\left(\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} \cdots \frac{n-1}{n}\right) \cdot \frac{1}{n+1}=\frac{1}{n(n+1)}$

Now Can you finish the Problem?

Third Hint

Therefore the probability $\frac{1}{n(n+1)}<\frac{1}{2010}$ or $n(n+1)>2010$

Now $ n^2+n-2010>0$

Now to find out the factorization we see that $45 \times 46=2070$ and $ 44 \times 45 =1980$

As $n$ is smallest so $n=45$

Subscribe to Cheenta at Youtube


Categories
Algebra Combinatorics Math Olympiad USA Math Olympiad

Algebra and Combination | AIME I, 2000 Question 3

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 2000 based on Algebra and Combination.

Algebra and combination – AIME 2000


In expansion \((ax+b)^{2000}\) where a and b are relatively prime positive integers the coefficient of \(x^{2}\) and \(x^{3}\) are equal, find a+b

  • is 107
  • is 667
  • is 840
  • cannot be determined from the given information

Key Concepts


Algebra

Equations

Combination

Check the Answer


Answer: is 667.

AIME, 2000, Question 3

Elementary Algebra by Hall and Knight

Try with Hints


 here coefficient of \(x^{2}\)= coefficient of \(x^{3}\) in the same expression

then \({2000 \choose 1998}a^{2}b^{1998}\)=\({2000 \choose 1997}a^{3}b^{1997}\)

then \(b=\frac{1998}{3}\)a=666a where a and b are relatively prime that is a=1,b=666 then a+b=666+1=667.

.

Subscribe to Cheenta at Youtube


Categories
AIME I Algebra Arithmetic Combinatorics Math Olympiad USA Math Olympiad

Fair coin Problem | AIME I, 1990 | Question 9

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1990 based on fair coin.

Fair Coin Problem – AIME I, 1990


A fair coin is to be tossed 10 times. Let i|j, in lowest terms, be the probability that heads never occur on consecutive tosses, find i+j.

  • is 107
  • is 73
  • is 840
  • cannot be determined from the given information

Key Concepts


Integers

Combinatorics

Algebra

Check the Answer


Answer: is 73.

AIME I, 1990, Question 9

Elementary Algebra by Hall and Knight

Try with Hints


5 tails flipped, any less,

by Pigeonhole principle there will be heads that appear on consecutive tosses

(H)T(H)T(H)T(H)T(H)T(H) 5 tails occur there are 6 slots for the heads to be placed but only 5H remaining, \({6 \choose 5}\) possible combination of 6 heads there are

\(\sum_{i=6}^{11}{i \choose 11-i}\)=\({6 \choose 5} +{7 \choose 4}+{8 \choose 3}+{9 \choose 2} +{10 \choose 1} +{11 \choose 0}\)=144

there are \(2^{10}\) possible flips of 10 coins

or, probability=\(\frac{144}{1024}=\frac{9}{64}\) or, 9+64=73.

Subscribe to Cheenta at Youtube


Categories
AIME I Algebra Arithmetic Combinatorics Math Olympiad USA Math Olympiad

Head Tail Problem | AIME I, 1986 | Question 13

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1986 based on Head Tail Problem.

Head Tail Problem – AIME I, 1986


In a sequence of coin tosses, one can keep a record of instances in which a tail is immediately followed by a head , a head is immediately followed by ahead and etc. We denote these by TH, HH, and etc. For example in the sequence TTTHHTHTTTHHTTH of 15 coin tosses we observe that there are two HH, three HT, four TH and five TT subsequences. How many different sequences of 15 coin tosses will contain exactly two HH, three HT, four TH, and five TT subsequences?

  • is 107
  • is 560
  • is 840
  • cannot be determined from the given information

Key Concepts


Integers

Combinatorics

Algebra

Check the Answer


Answer: is 560.

AIME I, 1986, Question 13

Elementary Algebra by Hall and Knight

Try with Hints


Let us observe the sequences.

H switches to T three times, T switches to H four times.

There are 5 TT subsequences.

We are to add 5 T’s into, the string. There are already 4 T’s in the sequence.

We are to add 5 balls in 4 urns which is same as 3 dividers \({5+3 \choose 3}\)=56

We do the same with 2H’s to get \({2+3 \choose 3}\)=10

so, \(56 \times 10\)=560.

Subscribe to Cheenta at Youtube


Categories
AIME I Algebra Arithmetic Combinatorics Math Olympiad USA Math Olympiad

Combinatorics in Tournament | AIME I, 1985 | Question 14

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1985 based on Combinatorics in Tournament.

Combinatorics in Tournament- AIME I, 1985


In a tournament each player played exactly one game against each of the other players. In each game the winner was awarded 1 point, the loser got 0 points, and each of the two player earned \(\frac{1}{2}\) point if the game was a tie. After the completion of the tournament, it was found that exactly half of the points earned by each player were earned against the ten players with the least number of points. (In particular, each of the ten lowest scoring players earned half of her/his points against the other nine of the ten). What was the total number of players in the tournament?

  • is 107
  • is 25
  • is 840
  • cannot be determined from the given information

Key Concepts


Integers

Combinatorics

Algebra

Check the Answer


Answer: is 25.

AIME I, 1985, Question 14

Elementary Algebra by Hall and Knight

Try with Hints


Let there be n+10 players

Case I from n players not in weakest 10, \({n \choose 2}\) games played and \({n \choose 2}\) points earned

Case II n players also earned \({n \choose 2}\) points against weakest 10

Case III now weakest 10 played among themselves \({10 \choose 2}\)=45 games and 45 points earned

Case IV 10 players also earned 45 points against stronger n

So total points earned= 2[\({n \choose 2}\)+45]=\(n^{2}-n+90\)

case V 1 point earned per game \({n+10 \choose 2}\)=\(\frac{(n+10)(n+9)}{2}\) games and \(\frac{(n+10)(n+9)}{2}\) points earned

So \(n^{2}-n+90=\frac{(n+10)(n+9)}{2}\)

or, \(n^{2}-21n+90=0\)

or, n=6, n=15 here taking n>10,

or, n=15 or, n+10=25.

Subscribe to Cheenta at Youtube


Categories
AIME I Algebra Arithmetic Combinatorics Math Olympiad USA Math Olympiad

Repeatedly Flipping a Fair Coin | AIME I, 1995| Question 15

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1995 repeatedly flipping a fair coin.

Flipping a Fair Coin – AIME I, 1995


Let p be the probability that, in the process of repeatedly flipping a fair coin, one will encounter a run of 5 heads before on encounters a run of 2 tails. Given that p can be written in the form \(\frac{m}{n}\), where m and n are relatively prime positive integers, find m+n.

  • is 107
  • is 37
  • is 840
  • cannot be determined from the given information

Key Concepts


Integers

Probability

Algebra

Check the Answer


Answer: is 37.

AIME I, 1995, Question 15

Elementary Number Theory by David Burton

Try with Hints


Let A be head flipped

B be tail flipped

outcomes are AAAAA, BAAAAA, BB. ABB, AABB, AAABB, AAAABB

with probabilities \(\frac{1}{32}\), \(\frac{1}{64}\), \(\frac{1}{4}\), \(\frac{1}{8}\), \(\frac{1}{16}\), \(\frac{1}{32}\), \(\frac{1}{64}\)

with five heads AAAAA, BAAAAA sum =\(\frac{3}{64}\) and sum of outcomes=\(\frac{34}{64}\)

or, m=3, n=34

or, m+n=37.

Subscribe to Cheenta at Youtube