Categories

## Algebraic Equation | AIME I, 2000 Question 7

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 2000 based on Algebraic Equation.

## Algebraic Equation – AIME 2000

Suppose that x,y and z are three positive numbers that satisfy the equation xyz=1, $x+\frac{1}{z}=5$ and $y+\frac{1}{x}=29$ then $z+\frac{1}{y}$=$\frac{m}{n}$ where m and n are relatively prime, find m+n

• is 107
• is 5
• is 840
• cannot be determined from the given information

### Key Concepts

Algebra

Equations

Integers

AIME, 2000, Question 7

Elementary Algebra by Hall and Knight

## Try with Hints

here $x+\frac{1}{z}=5$ then1=z(5-x)=xyz putting xyz=1 gives 5-x=xy and $y=(29-\frac{1}{x}$) together gives 5-x=x$(29-\frac{1}{x}$) then x=$\frac{1}{5}$

then y=29-5=24 and z=$\frac{1}{5-x}$=$\frac{5}{24}$

$z+\frac{1}{y}$=$\frac{1}{4}$ then 1+4=5.

.

Categories

## Logarithms and Equations | AIME I, 2000 | Question 9

Try this beautiful problem from the American Invitational Mathematics Examination, AIME I, 2000 based on Logarithms and Equations.

## Logarithms and Equations – AIME I 2000

$log_{10}(2000xy)-log_{10}xlog_{10}y=4$ and $log_{10}(2yz)-(log_{10}y)(log_{10}z)=1$ and $log_{10}(zx)-(log_{10}z)(log_{10}x)=0$ has two solutions $(x_{1},y_{1},z_{1}) and (x_{2},y_{2},z_{2})$ find $y_{1}+y_{2}$.

• is 905
• is 25
• is 840
• cannot be determined from the given information

### Key Concepts

Logarithms

Theory of Equations

Number Theory

AIME I, 2000, Question 9

Polynomials by Barbeau

## Try with Hints

Rearranging equations we get $-logxlogy+logx+logy-1=3-log2000$ and $-logylogz+logy+logz-1=-log2$ and $-logxlogz+logx+logz-1=-1$

taking p, q, r as logx, logy and logz, $(p-1)(q-1)=log2$ and $(q-1)(r-1)=log2$ and $(p-1)(r-1)=1$ which is first system of equations and multiplying the first three equations of the first system gives $(p-1)^{2}(q-1)^{2}(r-1)^{2}=(log 2)^{2}$ gives $(p-1)(q-1)(r-1)=+-(log2)$ which is second equation

from both equations (q-1)=+-(log2) gives (logy)+-(log2)=1 gives $y_{1}=20$,$y_{2}=5$ then $y_{1}+y_{2}=25$.

Categories

## Roots of Equation and Vieta’s formula | AIME I, 1996 Problem 5

Try this beautiful problem from the American Invitational Mathematics Examination, AIME, 1996 based on Roots of Equation and Vieta’s formula.

## Roots of Equation and Vieta’s formula – AIME I, 1996

Suppose that the roots of $x^{3}+3x^{2}+4x-11=0$ are a,b and c and that the roots of $x^{3}+rx^{2}+sx+t=0$ are a+b,b+c and c+a, find t.

• is 107
• is 23
• is 840
• cannot be determined from the given information

### Key Concepts

Functions

Roots of Equation

Vieta s formula

AIME I, 1996, Question 5

Polynomials by Barbeau

## Try with Hints

With Vieta s formula

$f(x)=x^{3}+3x^{2}+4x-11=(x-a)(x-b)(x-c)=0$

$\Rightarrow a+b+c=-3$, $ab+bc+ca=4$ and $abc=11$

Let a+b+c=-3=p

here t=-(a+b)(b+c)(c+a)

$\Rightarrow t=-(p-c)(p-a)(p-b)$

$\Rightarrow t=-f(p)=-f(-3)$

$t=-[(-3)^{3}+3(-3)^{2}+4(-3)-11]$

=23.

Categories

## Positive solution | AIME I, 1990 | Question 4

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1990 based on positive solution.

## Positive solution – AIME I, 1990

Find the positive solution to

$\frac{1}{x^{2}-10x-29}+\frac{1}{x^{2}-10x-45}-\frac{2}{x^{2}-10x-69}=0$

• is 107
• is 13
• is 840
• cannot be determined from the given information

### Key Concepts

Integers

Divisibility

Algebra

AIME I, 1990, Question 4

Elementary Algebra by Hall and Knight

## Try with Hints

here we put $x^{2}-10x-29=p$

$\frac{1}{p}+\frac{1}{p-16}-\frac{2}{p-40}=0$

or, (p-16)(p-40)+p(p-40)-2p(p-16)=0

or, -64p+(40)(16)=0

or, p=10

or, 10=$x^{2}-10x-29$

or, (x-13)(x+3)=0

or, x=13 positive solution.

Categories

## Equation of X and Y | AIME I, 1993 | Question 13

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1993 based on Equation of X and Y.

## Equation of X and Y – AIME I, 1993

Jenny and Kenny are walking in the same direction, Kenny at 3 feet per second and Jenny at 1 foot per second, on parallel paths that are 200 feet apart. A tall circular building 100 feet in diameter is centred mid way between the paths . At the instant when the building first blocks the line of sight between Jenny and Kenny, they are 200 feet apart. Let t be amount of time, in seconds, Before Jenny and Kenny, can see each other again. If t is written as a fraction in lowest terms, find the sum of numerator and denominator.

• is 107
• is 163
• is 840
• cannot be determined from the given information

### Key Concepts

Variables

Equations

Algebra

AIME I, 1993, Question 13

Elementary Algebra by Hall and Knight

## Try with Hints

Let circle be of radius 50

Let start points be (-50,100),(-50,-100) then at time t, end points (-50+t,100),(-50+3t,-100)

or, equation and equation of circle is

y=$\frac{-100}{t}x+200 -\frac{5000}{t}$ is first equation

$50^2=x^2+y^2$ is second equation

when they see again then

$\frac{-x}{y}=\frac{-100}{t}$

or, $y=\frac{xt}{100}$

solving in second equation gives $x=\frac{5000}{\sqrt{100^2+t^2}}$

or, $y=\frac{xt}{100}$

solving in first equation for t gives $t=\frac{160}{3}$

or, 160+3=163.

Categories

## Least Positive Integer Problem | AIME I, 2000 | Question 1

Try this beautiful problem from the American Invitational Mathematics Examination, AIME, 2000 based on Least Positive Integer.

## Least Positive Integer Problem – AIME I, 2000

Find the least positive integer n such that no matter how $10^{n}$ is expressed as the product of any two positive integers, at least one of these two integers contains the digit 0.

• is 107
• is 8
• is 840
• cannot be determined from the given information

### Key Concepts

Product

Least positive integer

Integers

AIME I, 2000, Question 1

Elementary Number Theory by Sierpinsky

## Try with Hints

$10^{n}$ has factor 2 and 5

for n=1 $2^{1}$=2 $5^{1}$=5

for n=2 $2^{2}$=4 $5^{2}=25$

for n=3 $2^{3}$=8 $5^{3}=125$

……..

for n=8 $2^{8}$=256 $5^{8}=390625$

here $5^{8}$ contains the zero then n=8.

Categories

## Equations with number of variables | AIME I, 2009 | Question 14

Try this beautiful problem from the American Invitational Mathematics Examination, AIME, 2009 based on Equations with a number of variables.

## Equations with number of variables – AIME 2009

For t=1,2,3,4, define $S^{t}=a^{t}_1+a^{t}_2+…+a^{t}_{350}$, where $a_{i}\in${1,2,3,4}. If $S_{1}=513, S_{4}=4745$, find the minimum possible value for $S_{2}$.

• is 905
• is 250
• is 840
• cannot be determined from the given information

### Key Concepts

Series

Theory of Equations

Number Theory

AIME, 2009, Question 14

Polynomials by Barbeau

## Try with Hints

j=1,2,3,4, let $m_{j}$ number of $a_{i}$ s = j then $m_{1}+m{2}+m{3}+m{4}=350$, $S_{1}=m_{1}+2m_{2}+3m_{3}+4m_{4}=513$ $S_{4}=m_{1}+2^{4}m_{2}+3^{4}m_{3}+4^{4}m_{4}=4745$

Subtracting first from second, then first from third yields $m_{2}+2m_{3}+3m_{4}=163,$ and $15m_{2}+80m_{3}+255m_{4}=4395$ Now subtracting 15 times first from second gives $50m_{3}+210m_{4}=1950$ or $5m_{3}+21m_{4}=195$ Then $m_{4}$ multiple of 5, $m_{4}$ either 0 or 5

If $m_{4}=0$ then $m_{j}$ s (226,85,39,0) and if $m_{4}$=5 then $m_{j}$ s (215,112,18,5) Then $S_{2}=1^{2}(226)+2^{2}(85)+3^{2}(39)+4^{2}(0)=917$ and $S_{2}=1^{2}(215)+2^{2}(112)+3^{2}(18)+4^{2}(5)=905$ Then min 905.

Categories

## Exponents and Equations | AIME I, 2010 Question 3

Try this beautiful problem from the American Invitational Mathematics Examination, AIME, 2010 based on Exponents and Equations.

## Exponents and Equations – AIME 2010

Suppose that y=$\frac{3x}{4}$ and $x^{y}=y^{x}$. The quantity x+y can be expressed as a rational number $\frac{r}{s}$ , where r and s are relatively prime positive integers. Find r+s.

.

• is 107
• is 529
• is 840
• cannot be determined from the given information

### Key Concepts

Algebra

Equations

Number Theory

AIME, 2010, Question 3.

Elementary Number Theory by Sierpinsky

## Try with Hints

y=$\frac{3x}{4}$ into  $x^{y}=y^{x}$  and $x^{\frac{3x}{4}}$=$(\frac{3x}{4})^{x}$ implies $x^{\frac{3x}{4}}$=$(\frac{3}{4})^{x}x^{x}$ implies $x^{-x}{4}$=$(\frac{3}{4})^{x}$ implies $x^{\frac{-1}{4}}=\frac{3}{4}$ implies $x=\frac{256}{81}$.

y=$\frac{3x}{4}=\frac{192}{81}$.

x+y=$\frac{448}{81}$ then 448+81=529.