Categories
Algebra Math Olympiad PRMO USA Math Olympiad

Circle | Geometry Problem | PRMO-2017 | Question 27

Try this beautiful Problem from Geometry based on Circle from PRMO 2017, Question 27. You may use sequential hints to solve the problem.

Try this beautiful Problem from Geometry based on Circle from PRMO 2017.

Circle – PRMO 2017, Problem 27


Let $\Omega_{1}$ be a circle with centre 0 and let $A B$ be a diameter of $\Omega_{1} .$ Le $P$ be a point on the segment $O B$ different from 0. Suppose another circle $\Omega_{2}$ with centre P lies in the interior of $\Omega_{1}$. Tangents are drawn from A and B to the circle $\Omega_{2}$ intersecting $\Omega_{1}$ again at $A_{1}$ and $B_{1}$ respectively such that $A_{1}$, and $B_{1}$ are on the opposite sides of $A B$. Given that $A_{1} B=5, A B_{1}=15$ and $O P=10,$ find the radius of $\Omega_{1}$

  • $9$
  • $40$
  • $34$
  • $20$

Key Concepts


Geometry

Circle

Check the Answer


Answer:$20$

PRMO-2017, Problem 27

Pre College Mathematics

Try with Hints


Circle Problem

Let radius of $\Omega_{1}$ be $R$ and that of $\Omega_{2}$ be $r$
From figure, $\Delta \mathrm{ADP} \sim \Delta \mathrm{AA}_{1} \mathrm{B}$
[
\begin{array}{l}
\Rightarrow \frac{D P}{A, B}=\frac{A P}{A B} \
\Rightarrow \frac{r}{5}=\frac{R+10}{2 R}
\end{array}
]

Can you now finish the problem ……….

Circle Problem figure

Again, $\Delta B P E \sim \Delta B A B_{1}$
Therefore $\frac{P E}{A B_{1}}=\frac{B P}{B A}$
$\Rightarrow \frac{r}{15}=\frac{R-10}{2 R}$

Can you finish the problem……..

Dividing (1) by (2)

$3=\frac{R+10}{R-10} \Rightarrow R=20$

Subscribe to Cheenta at Youtube


Leave a Reply

Your email address will not be published. Required fields are marked *