Categories

# Convex polyhedron Problem | AIME I, 1988 | Question 10

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1990 based on combinatorics in Tournament.

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1988 based on convex polyhedron.

## Convex polyhedron Problem – AIME I, 1988

A convex polyhedron has for its faces 12 squares, 8 regular hexagons, and 6 regular octagons. At each vertex of the polyhedron one square, one hexagon, and one octagon meet. How many segments joining vertices of the polyhedron lie in the interior of the polyhedron rather than along an edge or a face?

• is 107
• is 840
• is 634
• cannot be determined from the given information

### Key Concepts

Integers

Edges

Algebra

AIME I, 1988, Question 10

Geometry Revisited by Coxeter

## Try with Hints

${48 \choose 2}$=1128

Every vertex lies on exactly one vertex of a square/hexagon/octagon

V=(12)(4)=(8)(6)=(6)(8)=48

each vertex is formed by the trisection of three edges and every edge is counted twice, once at each of its endpoints, the number of edges E=$\frac{3V}{2}$=72

each of the segment on face of polyhedron is diagonal of that face, so each square gives $\frac{n(n-3)}{2}=2$ diagonals, each hexagon=9,each octagon=20. The number of diagonals is $(2)(12)+(9)(8)+(20)(6)$=216

or, number of space diagonals =1128-72-216=840.