Categories

# Divisibility AMC 8, 2017 problem 7

Try this beautiful problem from AMC 10. It involves geometry of triangles. We provide sequential hints so that you can try the problem.

## What are we learning ?

[/et_pb_text][et_pb_text _builder_version=”4.1″ text_font=”Raleway||||||||” text_font_size=”20px” text_letter_spacing=”1px” text_line_height=”1.5em” background_color=”#f4f4f4″ custom_margin=”10px||10px” custom_padding=”10px|20px|10px|20px” box_shadow_style=”preset2″]Competency in Focus: Divisibility This problem from American Mathematics contest (AMC 8, 2017) is based on the concept of divisibility .[/et_pb_text][et_pb_text _builder_version=”4.3.1″ text_font=”Raleway|300|||||||” text_text_color=”#ffffff” header_font=”Raleway|300|||||||” header_text_color=”#e2e2e2″ background_color=”#0c71c3″ custom_padding=”20px|20px|20px|20px” hover_enabled=”0″ border_radii=”on|5px|5px|5px|5px” box_shadow_style=”preset3″]

## Next understand the problem

[/et_pb_text][et_pb_text _builder_version=”4.1″ text_font=”Raleway||||||||” text_font_size=”20px” text_letter_spacing=”1px” text_line_height=”1.5em” background_color=”#f4f4f4″ custom_margin=”10px||10px” custom_padding=”10px|20px|10px|20px” box_shadow_style=”preset2″]Let $Z$ be a 6-digit positive integer, such as 247247, whose first three digits are the same as its last three digits taken in the same order. Which of the following numbers must also be a factor of $Z$? $(A)11\qquad(B)19\qquad(A)101\qquad(A)111\qquad(A)1111$[/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row _builder_version=”4.0″][et_pb_column type=”4_4″ _builder_version=”3.25″ custom_padding=”|||” custom_padding__hover=”|||”][et_pb_accordion open_toggle_text_color=”#0c71c3″ _builder_version=”4.3.1″ toggle_font=”||||||||” body_font=”Raleway||||||||” text_orientation=”center” custom_margin=”10px||10px”][et_pb_accordion_item title=”Source of the problem” open=”on” _builder_version=”4.1″]American Mathematical Contest 2017, AMC 8  Problem 7[/et_pb_accordion_item][et_pb_accordion_item title=”Key Competency” _builder_version=”4.1″ open=”off”]Divisibility[/et_pb_accordion_item][et_pb_accordion_item title=”Difficulty Level” _builder_version=”4.1″ open=”off”]2/10[/et_pb_accordion_item][et_pb_accordion_item title=”Suggested Book” _builder_version=”4.3.1″ open=”off”]Challenges and Thrills in Pre College Mathematics Excursion Of Mathematics[/et_pb_accordion_item][/et_pb_accordion][et_pb_text _builder_version=”4.0.9″ text_font=”Raleway|300|||||||” text_text_color=”#ffffff” header_font=”Raleway|300|||||||” header_text_color=”#e2e2e2″ background_color=”#0c71c3″ custom_margin=”48px||48px” custom_padding=”20px|20px|0px|20px||” border_radii=”on|5px|5px|5px|5px” box_shadow_style=”preset3″]

[/et_pb_text][et_pb_tabs _builder_version=”4.1″][et_pb_tab title=”HINT 0″ _builder_version=”4.0.9″]Do you really need a hint? Try it first![/et_pb_tab][et_pb_tab title=”HINT 1″ _builder_version=”4.1″]Take $Z$ as $\overline{\rm ABCABC}$.[/et_pb_tab][et_pb_tab title=”HINT 2″ _builder_version=”4.1″]Calculate the alternating sum of the digits. i.e., $A-B+C-A+B-C=0$ then it is dibisible by $11$[/et_pb_tab][/et_pb_tabs][et_pb_text _builder_version=”3.27.4″ text_font=”Raleway|300|||||||” text_text_color=”#ffffff” header_font=”Raleway|300|||||||” header_text_color=”#e2e2e2″ background_color=”#0c71c3″ min_height=”12px” custom_margin=”50px||50px” custom_padding=”20px|20px|20px|20px” border_radii=”on|5px|5px|5px|5px” box_shadow_style=”preset3″]