Categories

# Integers | AIME I, 1993 Problem | Question 4

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1993 based on Integers. Use sequential hints if required.

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1993 based on Integers.

## Integer – AIME I, 1993

Find the number of four topics of integers (a,b,c,d) with 0<a<b<c<d<500 satisfy a+d=b+c and bc-ad=93.

• is 107
• is 870
• is 840
• cannot be determined from the given information

### Key Concepts

Integers

Digits

Algebra

AIME I, 1993, Question 4

Elementary Algebra by Hall and Knight

## Try with Hints

Let k=a+d=b+c

or, d=k-a, b=k-c,

or, (k-c)c-a(k-a)=k(c-a)-(c-a)(c+a)

=(a-c)(a+c-k)

=(c-a)(d-c)=93

(c-a)(d-c)=(1,93),(3,31),(31,3),(93,1)

solving for c

(a,b,c,d)=(c-93,c-92,c,c+1),(c-31,c-28,c,c+3),(c-1,c+92,c,c+93),(c-3,c+28,c,c+31)

taking first two solutions a<b<c<d<500

or,$1 \leq c-93, c+1 \leq 499$

or, $94 \leq c \leq 498$ gives 405 solutions

and $1 \leq c-31, c+3 \leq 499$

or, $32 \leq c \leq 496$ gives 465 solutions

or, 405+465=870 solutions.