Categories
AMC 10 USA Math Olympiad

Number Theory – AMC 10A 2016 Problem 22

AMC 10A 2016 Problem 22 solution. See the solution with sequential hints. For some positive integer, the number  has  positive integer divisors

[et_pb_section fb_built=”1″ _builder_version=”4.0″][et_pb_row _builder_version=”3.25″][et_pb_column type=”4_4″ _builder_version=”3.25″ custom_padding=”|||” custom_padding__hover=”|||”][et_pb_text _builder_version=”3.27.4″ text_font=”Raleway|300|||||||” text_text_color=”#ffffff” header_font=”Raleway|300|||||||” header_text_color=”#e2e2e2″ background_color=”#0c71c3″ custom_padding=”20px|20px|20px|20px” border_radii=”on|5px|5px|5px|5px” box_shadow_style=”preset3″]

Understand the problem

[/et_pb_text][et_pb_text _builder_version=”3.27.4″ text_font=”Raleway||||||||” background_color=”#f4f4f4″ custom_margin=”10px||10px” custom_padding=”10px|20px|10px|20px” box_shadow_style=”preset2″] For some positive integer $n$, the number $110n^3$ has $110$ positive integer divisors, including $1$ and the number $110n^3$. How many positive integer divisors does the number $81n^4$ have ? 

[/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row _builder_version=”3.25″][et_pb_column type=”4_4″ _builder_version=”3.25″ custom_padding=”|||” custom_padding__hover=”|||”][et_pb_accordion open_toggle_text_color=”#0c71c3″ _builder_version=”4.0″ toggle_font=”||||||||” body_font=”Raleway||||||||” text_orientation=”center” custom_margin=”10px||10px”][et_pb_accordion_item title=”Source of the problem” open=”on” _builder_version=”4.0″]American Mathematics Competition [/et_pb_accordion_item][et_pb_accordion_item title=”Topic” _builder_version=”4.0″ open=”off”]Number Theory

[/et_pb_accordion_item][et_pb_accordion_item title=”Difficulty Level” _builder_version=”4.0″ open=”off”]8/10

[/et_pb_accordion_item][et_pb_accordion_item title=”Suggested Book” _builder_version=”3.29.2″ open=”off”]

Elementary Number Theory by David M. Burton

[/et_pb_accordion_item][/et_pb_accordion][et_pb_text _builder_version=”3.27.4″ text_font=”Raleway|300|||||||” text_text_color=”#ffffff” header_font=”Raleway|300|||||||” header_text_color=”#e2e2e2″ background_color=”#0c71c3″ custom_margin=”48px||48px” custom_padding=”20px|20px|20px|20px” border_radii=”on|5px|5px|5px|5px” box_shadow_style=”preset3″]

Start with hints

[/et_pb_text][et_pb_tabs active_tab_background_color=”#0c71c3″ inactive_tab_background_color=”#000000″ _builder_version=”4.0″ tab_text_color=”#ffffff” tab_font=”||||||||” background_color=”#ffffff” custom_padding=”|||21px||”][et_pb_tab title=”Hint 0″ _builder_version=”4.0″]

Check the problem out…give its statement a thorough read. Might appear a bit daunting on the first couple of reads. Think for some time, you could be on to something without any help whatsoever ![/et_pb_tab][et_pb_tab title=”Hint 1″ _builder_version=”4.0″]

Okay, now let’s think about what our first thoughts could be, on the problem. It’s definitely about the n in the problem, which acts as our unknown here.  Can you somehow try finding the n ? Let’s take the first step in that direction. How could we prime factorize 110 ? That’s easy 110 = 2.5.11. Could you take things from hereon to find more about the n ?

[/et_pb_tab][et_pb_tab title=”Hint 2″ _builder_version=”4.0″]

However interestingly the problem says, the number 110. (n^3)  has 110 factors. Just as we saw, 110. (n^3) = 2.5.11.(n^3) Now, let’s use some basic number theoretic knowledge here. How many divisors would 110. (n^3) have then ?  If n=1 Clearly it would have, (1+1). (1+1). (1+1) = 8 divisors.  So see, that’s the idea isn’t it ? Pretty much of plug and play. We actually get to control how many divisors the number has, once we adjust (n^3).  Now you could try some advances…        

[/et_pb_tab][et_pb_tab title=”Hint 3″ _builder_version=”4.0″]

 Okay, so as we just understood we need to achieve a count of 110 divisors.  If we have 110.(n^3) = 2^(10). 5^(4). 11 which actually conforms to :  (10+1).(4+1).(1+1) = 11.5.2 = 110  So, that implies :   (n^3) = 2^(9). 5^(3), which means, n = 2^(3). 5 Now that we have found out n…the rest dosen’t seem really a big deal. You could do it…try !                  

[/et_pb_tab][et_pb_tab title=”Hint 4″ _builder_version=”4.0″]

Well, it’s pretty straightforward now.  Let’s call 81.(n^4) equal to some X. First let’s prime factorize 81. That would be 81 = (3^4). So, finally X = (3^4). (2^12). (5^4) How many divisors does that make ? Yes, (4+1).(12+1). (4+1) = 13.25 = 325.

That’s our answer. 325 factors

[/et_pb_tab][/et_pb_tabs][et_pb_text _builder_version=”3.27.4″ text_font=”Raleway|300|||||||” text_text_color=”#ffffff” header_font=”Raleway|300|||||||” header_text_color=”#e2e2e2″ background_color=”#0c71c3″ custom_margin=”48px||48px” custom_padding=”20px|20px|20px|20px” border_radii=”on|5px|5px|5px|5px” box_shadow_style=”preset3″]

Watch video

[/et_pb_text][et_pb_text _builder_version=”3.27.4″ text_font=”Raleway|300|||||||” text_text_color=”#ffffff” header_font=”Raleway|300|||||||” header_text_color=”#e2e2e2″ background_color=”#0c71c3″ min_height=”12px” custom_margin=”50px||50px” custom_padding=”20px|20px|20px|20px” border_radii=”on|5px|5px|5px|5px” box_shadow_style=”preset3″]

Connected Program at Cheenta

[/et_pb_text][et_pb_blurb title=”Math Olympiad Program” url=”https://www.cheenta.com/matholympiad/” url_new_window=”on” image=”https://www.cheenta.com/wp-content/uploads/2018/03/matholympiad.png” _builder_version=”3.23.3″ header_font=”||||||||” header_text_color=”#e02b20″ header_font_size=”48px” link_option_url=”https://www.cheenta.com/matholympiad/” link_option_url_new_window=”on”]

Math Olympiad is the greatest and most challenging academic contest for school students. Brilliant school students from over 100 countries participate in it every year. Cheenta works with small groups of gifted students through an intense training program. It is a deeply personalized journey toward intellectual prowess and technical sophistication.[/et_pb_blurb][et_pb_button button_url=”https://www.cheenta.com/matholympiad/” url_new_window=”on” button_text=”Learn More” button_alignment=”center” _builder_version=”3.23.3″ custom_button=”on” button_bg_color=”#0c71c3″ button_border_color=”#0c71c3″ button_border_radius=”0px” button_font=”Raleway||||||||” button_icon=”%%3%%” background_layout=”dark” button_text_shadow_style=”preset1″ box_shadow_style=”preset1″ box_shadow_color=”#0c71c3″][/et_pb_button][et_pb_text _builder_version=”3.27.4″ text_font=”Raleway|300|||||||” text_text_color=”#ffffff” header_font=”Raleway|300|||||||” header_text_color=”#e2e2e2″ background_color=”#0c71c3″ custom_margin=”50px||50px” custom_padding=”20px|20px|20px|20px” border_radii=”on|5px|5px|5px|5px” box_shadow_style=”preset3″]

Similar Problems

[/et_pb_text][et_pb_post_slider include_categories=”9″ _builder_version=”3.22.4″][/et_pb_post_slider][et_pb_divider _builder_version=”3.22.4″ background_color=”#0c71c3″][/et_pb_divider][/et_pb_column][/et_pb_row][/et_pb_section]

Leave a Reply

Your email address will not be published. Required fields are marked *