Algebra Math Olympiad PRMO USA Math Olympiad

Positive Integer | PRMO-2017 | Question 1

Try this Integer Problem from Algebra from PRMO 2017, Question 1 You may use sequential hints to solve the problem.

Try this beautiful Positive Integer Problem from Algebra from PRMO 2017, Question 1.

Positive Integer – PRMO 2017, Question 1

How many positive integers less than 1000 have the property that the sum of the digits of each such number is divisible by 7 and the number itself is divisible by $3 ?$

  • $9$
  • $7$
  • $28$

Key Concepts




Check the Answer


PRMO-2017, Problem 1

Pre College Mathematics

Try with Hints

Let $n$ be the positive integer less than 1000 and $s$ be the sum of its digits, then $3 \mid n$ and $7 \mid s$
$3|n \Rightarrow 3| s$
therefore$21| s$

Can you now finish the problem ……….

Also $n<1000 \Rightarrow s \leq 27$
therefore $\mathrm{s}=21$
Clearly, n must be a 3 digit number Let $x_{1}, x_{2}, x_{3}$ be the digits, then $x_{1}+x_{2}+x_{3}=21$
where $1 \leq x_{1} \leq 9,0 \leq x_{2}, x_{3} \leq 9$
$\Rightarrow x_{2}+x_{3}=21-x_{1} \leq 18$
$\Rightarrow x_{1} \geq 3$

Can you finish the problem……..

For $x_{1}=3,4, \ldots ., 9,$ the equation (1) has $1,2,3, \ldots ., 7$ solutions
therefore total possible solution of equation (1)

=$1+2+\ldots+7=\frac{7 \times 8}{2}=28$

Subscribe to Cheenta at Youtube

Leave a Reply

Your email address will not be published. Required fields are marked *