Categories

# Probability in Marbles | AMC 10A, 2010| Problem No 23

Try this beautiful Problem on Probability from AMC 10A, 2010. Problem-23. You may use sequential hints to solve the problem.

Try this beautiful Problem on Probability in Marbles based on smallest value AMC 10 A, 2010. You may use sequential hints to solve the problem.

## Probability in Marbles – AMC-10A, 2010- Problem 23

Each of 2010 boxes in a line contains a single red marble, and for $1 \leq k \leq 2010$, the box in the $k$ th position also contains $k$ white marbles. Isabella begins at the first box and successively draws a single marble at random from each box, in order. She stops when she first draws a red marble. Let $P(n)$ be the probability that Isabella stops after drawing exactly $n$ marbles. What is the smallest value of $n$ for which $P(n)<\frac{1}{2010}$ ?

,

• $20$
• $22$
• $44$
• $45$
• $46$

Probability

Combination

Marbles

## Suggested Book | Source | Answer

Pre College Mathematics

#### Source of the problem

AMC-10A, 2010 Problem-23

#### Check the answer here, but try the problem first

$45$

## Try with Hints

#### First Hint

Given that Each of 2010 boxes in a line contains a single red marble, and for $1 \leq k \leq 2010$, the box in the $k$ th position also contains $k$ white marbles..

Therefore The probability of drawing a white marble from box $k$ is $\frac{k}{k+1}$ and the probability of drawing a red marble from box $k$ is $\frac{1}{k+1}$

Now can you finish the problem?

#### Second Hint

Also given that She stops when she first draws a red marble. Let $P(n)$ be the probability that Isabella stops after drawing exactly $n$ marbles.

Therefore we can say $P(n)=\left(\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} \cdots \frac{n-1}{n}\right) \cdot \frac{1}{n+1}=\frac{1}{n(n+1)}$

Now Can you finish the Problem?

#### Third Hint

Therefore the probability $\frac{1}{n(n+1)}<\frac{1}{2010}$ or $n(n+1)>2010$

Now $n^2+n-2010>0$

Now to find out the factorization we see that $45 \times 46=2070$ and $44 \times 45 =1980$

As $n$ is smallest so $n=45$