Geometry Math Olympiad PRMO USA Math Olympiad

Ratio of the areas | PRMO-2019 | Problem 19

Try this beautiful problem from PRMO, 2019, problem-19, based on the Ratio of the areas. You may use sequential hints to solve the problem.

Try this beautiful problem from PRMO, 2019 based on Ratio of the areas.

Ratio of the areas | PRMO | Problem-19

Let $\mathrm{AB}$ be a diameter of a circle and let $\mathrm{C}$ be a point on the segment $\mathrm{AB}$ such that $\mathrm{AC}: \mathrm{CB}=6: 7 .$ Let $\mathrm{D}$ be a point on the circle such that $\mathrm{DC}$ is perpendicular to $\mathrm{AB}$. Let DE be the diameter through $\mathrm{D}$. If $[\mathrm{XYZ}]$ denotes the area of the triangle XYZ. Find [ABD] / $[\mathrm{CDE}]$ to the nearest integer.

  • $20$
  • $91$
  • $13$
  • \(23\)

Key Concepts




Check the Answer


PRMO-2019, Problem 19

Pre College Mathematics

Try with Hints

ratio of the areas problem figure

\(\angle \mathrm{AOC} \quad=\frac{6 \pi}{13}, \angle \mathrm{BOC}=\frac{7 \pi}{13}\)

$\mathrm{Ar} \Delta \mathrm{ABD}=\mathrm{Ar} \Delta \mathrm{ABC}=\frac{1}{2} \mathrm{AB} \times \mathrm{OC} \sin \frac{6 \pi}{13}$

$\mathrm{Ar} \Delta \mathrm{CDE}=\frac{1}{2} \mathrm{DE} \times \mathrm{OC} \sin \left(\frac{7 \pi}{13}-\frac{6 \pi}{13}\right)$


$\frac{[\mathrm{ABD}]}{[\mathrm{CDE}]}=\frac{\sin \frac{6 \pi}{13}}{\sin \frac{\pi}{13}}=\frac{1}{2 \sin \frac{\pi}{26}}=\mathrm{p}$

because $\sin \theta \cong \theta$ if $\theta$ is small
$\Rightarrow \sin \frac{\pi}{26} \cong \frac{\pi}{26}$

$\mathrm{p}=\frac{13}{\pi} \Rightarrow$ Nearest integer to $\mathrm{p}$ is 4

Subscribe to Cheenta at Youtube

Leave a Reply

Your email address will not be published. Required fields are marked *