Categories

# Reflection Problem | AIME I, 1988 | Question 14

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1988, Question 14, based on Reflection.

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1988, Question 14, based on Reflection.

## Reflection Problem – AIME I, 1988

Let C be the graph of xy=1 and denote by C’ the reflection of C in the line y=2x. let the equation of C’ be written in the form $12x^{2}+bxy +cy^{2}+d=0$, find the product bc.

• is 107
• is 84
• is 840
• cannot be determined from the given information

Geometry

Equation

Algebra

## Check the Answer

AIME I, 1988, Question 14

Coordinate Geometry by Loney

## Try with Hints

Let P(x,y) on C such that P'(x’,y’) on C’ where both points lie on the line perpendicular to y=2x

slope of PP’=$\frac{-1}{2}$, then $\frac{y’-y}{x’-x}$=$\frac{-1}{2}$

or, x’+2y’=x+2y

also midpoint of PP’, $(\frac{x+x’}{2},\frac{y+y’}{2})$ lies on y=2x

or, $\frac{y+y’}{2}=x+x’$

or, 2x’-y’=y-2x

solving these two equations, x=$\frac{-3x’+4y’}{5}$ and $y=\frac{4x’+3y’}{5}$

putting these points into the equation C $\frac{(-3x’+4y’)(4x’+3y’)}{25}$=1

which when expanded becomes

$12x’^{2}-7x’y’-12y’^{2}+25=0$

or, bc=(-7)(-12)=84.