Categories

# Right angled triangle | AIME I, 1994 | Question 10

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1994 based on Right angled triangle.

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1994 based on Right angled triangle.

## Right angled triangle – AIME I, 1994

In $\Delta ABC$, $\angle C$ is a right angle and the altitude from C meets AB at D. The lengths of the sides of $\Delta ABC$ are integers, $BD={29}^{3}$, and $cosB=\frac{m}{n}$, where m, n are relatively prime positive integers, find m+n.

• is 107
• is 450
• is 840
• cannot be determined from the given information

### Key Concepts

Integers

Right angled triangle

Pythagoras Theorem

AIME I, 1994, Question 10

Geometry Vol I to IV by Hall and Stevens

## Try with Hints

$\Delta ABC \sim \Delta CBD$

$\frac{BC}{AB}=\frac{29^{3}}{BC}$

$\Rightarrow {BC}^{2}=29^{3}AB$

$\Rightarrow 29^{2}|BC and 29|AB$

$\Rightarrow BC and AB are in form 29^{2}x, 29x^{2}$ where x is integer

$by Pythagoras Theorem, AC^{2}+BC^{2}=AB^{2}$

$\Rightarrow (29^{2}x)^{2}+AC^{2}=(29x^{2})^{2}$

$\Rightarrow 29x|AC$

taking y=$\frac{AC}{29x}$ and dividing by (29x)^{2}\)

$\Rightarrow 29^{2}=x^{2}-y^{2}=(x-y)(x+y)$

where x,y are integers, the factors are $(1,29^{2}),(29,29)$

$y=\frac{AC}{29x}$ not equals 0 $\Rightarrow x-y=1, x+y=29$

$\Rightarrow x=\frac{1+29^{2}}{2}$

=421 then$cosB=\frac{BC}{AB}=\frac{29^{2}x}{29x^{2}}$=$\frac{29}{421}$

m+n=29+421=450.