Try this beautiful problem from the American Invitational Mathematics Examination, AIME, 2000 based on Sequence and greatest integer.

## Sequence and greatest integer – AIME I, 2000

Let S be the sum of all numbers of the form \(\frac{a}{b}\),where a and b are relatively prime positive divisors of 1000, find greatest integer that does not exceed \(\frac{S}{10}\).

- is 107
- is 248
- is 840
- cannot be determined from the given information

**Key Concepts**

Equation

Algebra

Integers

## Check the Answer

Answer: is 248.

AIME I, 2000, Question 11

Elementary Number Theory by Sierpinsky

## Try with Hints

We have 1000=(2)(2)(2)(5)(5)(5) and \(\frac{a}{b}=2^{x}5^{y} where -3 \leq x,y \leq 3\)

sum of all numbers of form \(\frac{a}{b}\) such that a and b are relatively prime positive divisors of 1000

=\((2^{-3}+2^{-2}+2^{-1}+2^{0}+2^{1}+2^{2}+2^{3})(5^{-3}+5^{-2}+5^{-1}+5^{0}+5^{1}+5^{2}+5^{3})\)

\(\Rightarrow S= \frac{(2^{-3})(2^{7}-1)}{2-1} \times\) \(\frac{(5^{-3})(5^{7}-1)}{5-1}\)

=2480 + \(\frac{437}{1000}\)

\(\Rightarrow [\frac{s}{10}]\)=248.

## Other useful links

- https://www.cheenta.com/cubes-and-rectangles-math-olympiad-hanoi-2018/
- https://www.youtube.com/watch?v=ST58GTF95t4&t=140s