Categories
AIME II Algebra Arithmetic Calculus Math Olympiad USA Math Olympiad

Sequence and permutations | AIME II, 2015 | Question 10

Try this beautiful problem from the American Invitational Mathematics Examination II, AIME II, 2015 based on Sequence and permutations.

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME II, 2015 based on Sequence and permutations.

Sequence and permutations – AIME II, 2015


Call a permutation \(a_1,a_2,….,a_n\) of the integers 1,2,…,n quasi increasing if \(a_k \leq a_{k+1} +2\) for each \(1 \leq k \leq n-1\), find the number of quasi increasing permutations of the integers 1,2,….,7.

  • is 107
  • is 486
  • is 840
  • cannot be determined from the given information

Key Concepts


Sequence

Permutations

Integers

Check the Answer


Answer: is 486.

AIME II, 2015, Question 10

Elementary Number Theory by David Burton

Try with Hints


While inserting n into a string with n-1 integers, integer n has 3 spots where it can be placed before n-1, before n-2, and at the end

Number of permutations with n elements is three times the number of permutations with n-1 elements

or, number of permutations for n elements=3 \(\times\) number of permutations of (n-1) elements

or, number of permutations for n elements=\(3^{2}\) number of permutations of (n-2) elements

……

or, number of permutations for n elements=\(3^{n-2}\) number of permutations of {n-(n-2)} elements

or, number of permutations for n elements=2 \(\times\) \(3^{n-2}\)

forming recurrence relation as the number of permutations =2 \(\times\) \(3^{n-2}\)

for n=3 all six permutations taken and go up 18, 54, 162, 486

for n=7, here \(2 \times 3^{5} =486.\)

Header text

as

Header text

sds

Subscribe to Cheenta at Youtube


Leave a Reply

Your email address will not be published. Required fields are marked *