Categories
India Math Olympiad Math Olympiad PRMO USA Math Olympiad

Sum of two digit numbers | PRMO-2016 | Problem 7

Try this beautiful problem from Algebra based on Sum of two digit numbers from PRMO 2016.

Sum of two digit numbers | PRMO | Problem 7


Let s(n) and p(n) denote the sum of all digits of n and the products of all the digits of n(when written in decimal form),respectively.Find the sum of all two digits natural numbers n such that \(n=s(n)+p(n)\)

  • $560$
  • $531$
  • $654$

Key Concepts


Algebra

number system

addition

Check the Answer


Answer:$531$

PRMO-2016, Problem 7

Pre College Mathematics

Try with Hints


Let \(n\) is a number of two digits ,ten’s place \(x\) and unit place is \(y\).so \(n=10x +y\).given that \(s(n)\)= sum of all digits \(\Rightarrow s(n)=x+y\) and \(p(n)\)=product of all digits=\(xy\)

now the given condition is \(n=s(n)+p(n)\)

Can you now finish the problem ……….

From \(n=s(n)+p(n)\) condition we have,

\(n=s(n)+p(n)\) \(\Rightarrow 10x+y=x+y+xy \Rightarrow 9x=xy \Rightarrow y=9\) and the value of\(x\) be any digit….

Can you finish the problem……..

Therefore all two digits numbers are \(19,29,39,49,59,69,79,89,99\) and sum=\(19+29+39+49+59+69+79+89+99=531\)

Subscribe to Cheenta at Youtube


Categories
AMC 8 India Math Olympiad Math Olympiad PRMO USA Math Olympiad

Roots of Equations | PRMO-2016 | Problem 8

Try this beautiful problem from Algebra based on roots of equations.

Roots of Equations | PRMO | Problem 8


Suppose that \(a\) and \(b\) are real numbers such that \(ab \neq 1\) and the equations \(120 a^2 -120a+1=0\) and \(b^2-120b+120=0\) hold. Find the value of \(\frac{1+b+ab}{a}\)

  • $200$
  • $240$
  • $300$

Key Concepts


Algebra

quadratic equation

Roots

Check the Answer


Answer:$240$

PRMO-2016, Problem 8

Pre College Mathematics

Try with Hints


The given equations are \(120 a^2 -120a+1=0\) and \(b^2-120b+120=0\).we have to find out the values of \(a\) and \(b\)….

Let \(x,y\) be the roots of the equation \(120 a^2 -120a+1=0\)then \(\frac{1}{x},\frac{1}{y}\) be the roots of the equations of \(b^2-120b+120=0\).can you find out the value of \(a\) & \(b\)

Can you now finish the problem ……….

From two equations after sim[lificatiopn we get…\(a=x\) and \(b=\frac{1}{y}\) (as \(ab \neq 1)\)

Can you finish the problem……..

\(\frac{1+b+ab}{a}\)=\(\frac { 1+\frac{1}{y} +\frac{x}{y}}{x}\)=\(\frac{(x+y)+1}{xy}=240\)

Subscribe to Cheenta at Youtube