Categories
AMC 10 Math Olympiad USA Math Olympiad

Triangle and Quadrilateral | AMC-10A, 2005 | Problem 25

Try this beautiful problem from Geometry: Ratios of the areas of Triangle and Quadrilateral from AMC-10A. You may use sequential hints to solve the problem.

Try this beautiful problem from Geometry: Area of Triangle and Quadrilateral

Ratios of the areas of Triangle and Quadrilateral – AMC-10A, 2005- Problem 25


In $ABC$ we have $AB = 25$, $BC = 39$, and $AC=42$. Points $D$ and $E$ are on $AB$ and $AC$ respectively, with $AD = 19$ and $AE = 14$. What is the ratio of the area of triangle $ADE$ to the area of the quadrilateral $BCED$?

  • \(\frac{19}{56}\)
  • \(\frac{19}{66}\)
  • \(\frac{17}{56}\)
  • \(\frac{11}{56}\)
  • \(\frac{19}{37}\)

Key Concepts


Geometry

Triangle

quadrilateral

Check the Answer


Answer: \(\frac{19}{56}\)

AMC-10A (2005) Problem 25

Pre College Mathematics

Try with Hints


Triangle and Rectangle Figure

Given that $AB = 25$, $BC = 39$, and $AC=42$.we have to find out Ratios of the areas of Triangle\(\triangle ADE\) and the quadrilateral \(CBED\).So if we can find out the area the \(\triangle ADE\) and area of the \(\triangle ABC\) ,and subtract \(\triangle ADE\) from \(\triangle ABC\) then we will get area of the region \(CBDE\).Can you find out the area of \(CBDE\)?

Can you find out the required area…..?

Triangle and Rectangle Figure

Now \(\frac{\triangle ADE}{\triangle ABC}=\frac{AD}{AB}.\frac{AE}{AC}=\frac{19}{25}.\frac{14}{42}=\frac{19}{75}\)

Therefore area of \(BCED\)=area of \(\triangle ABC\)-area of \(\triangle ADE\).Now can you find out Ratios of the areas of Triangle and the quadrilateral?

can you finish the problem……..

Now \(\frac{\triangle ADE}{quad.BCED}\)=\(\frac{\triangle ADE}{{\triangle ABC}-{\triangle ADE}}\)=\(\frac{1}{\frac{\triangle ABC}{\triangle ADE}-1}=\frac{1}{\frac{75}{19}-1}=\frac{19}{56}\)

Subscribe to Cheenta at Youtube


Leave a Reply

Your email address will not be published. Required fields are marked *