Categories
Algebra Arithmetic Geometry Math Olympiad USA Math Olympiad

Triangle and Trigonometry | AIME I, 1999 Question 14

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1999 based on Triangle and Trigonometry.

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1999 based on Triangle and Trigonometry.

Triangle and Trigonometry – AIME 1999


Point P is located inside triangle ABC so that angles PAB,PBC and PCA are all congruent. The sides of the triangle have lengths AB=13, BC=14, CA=15, and the tangent of angle PAB is \(\frac{m}{n}\), where m and n are relatively prime positive integers, find m+n.

Triangle and Trigonometry
  • is 107
  • is 463
  • is 840
  • cannot be determined from the given information

Key Concepts


Triangles

Angles

Trigonometry

Check the Answer


Answer: is 463.

AIME, 1999, Question 14

Geometry Revisited by Coxeter

Try with Hints


 Let y be the angleOAB=angleOBC=angleOCA then from three triangles within triangleABC we have \(b^{2}=a^{2}+169-26acosy\) \(c^{2}=b^{2}+196-28bcosy\) \(a^{2}=c^{2}+225-30ccosy\) adding these gives cosy(13a+14b+15c)=295

[ABC]=[AOB]+[BOC]+[COA]=\(\frac{siny(13a+14b+15c)}{2}\)=84 then (13a+14b+15c)siny=168

tany=\(\frac{168}{295}\) then 168+295=463.

.

Subscribe to Cheenta at Youtube


Leave a Reply

Your email address will not be published. Required fields are marked *